Weight-Bearing Versus Non-Weight-Bearing Exercises in Management of Osteoporosis in Geriatrics

Enas F. Youssef*, Alsayed Abd Elhameed Shanab** and Mohamed A. A. Shahine.***

*Department of Physical Therapy for Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University **Department of Physical Therapy for Cardiopulmonary Disorders and Geriatrics Faculty of Physical Therapy, Cairo University ***Department of Radio Diagnosis, Faculty of Medicine, Cairo University

ABSTRACT

Purpose: The purpose of this study was to compare the effects of weight -bearing exercises with non weightbearing exercises on elderly patients with osteoporosis. Subjects: Forty elderly osteoporotic patients (13 male and 27 female) "with T- score less than -2.5 in the lumbar spine and right femoral neck" participated in this study, their age ranged from 60 to 70 years old. Methods: The patients were divided randomly into two groups: Group-I: Twenty patients with mean age (65.7±2.9) years old practiced weight-bearing exercises program. Group-II: Twenty patients with mean age (65.8±3.2) years old practiced non-weight bearing exercises program. Each patient was trained for 30 to 45 minutes/ session, two times /week for 6 months. The bone mineral density (BMD) of the lumbar spine and right femoral neck were measured by (DXA) for each patient before and after the exercise program in addition to the quality of life by "ECOS-16" questionnaire. **Results:** Paired and student t-tests proved that the mean values of BMD of the lumbar spine and right femoral neck were significantly increased in both groups with more significant increase in weightbearing group. The quality of life was significantly improved in both groups without any significant differences between them. Conclusion: The weight -bearing exercises program may increase bone mineral density greater than the non-weight-bearing exercises in elderly subjects with osteoporosis. Weight-bearing or non-weight-bearing exercises could be effective in improving the quality of life of patients with osteoporosis.

Key words: Osteoporosis, Bone mineral density, Weight-bearing, exercises, Quality of life and Geriatrics.

INTRODUCTION

he deterioration of the physiological capacity of human occurs as a consequence of the biological aging process³⁸. The reduction in functional capacity consequently decreases the ability to perform the common activities of living in the older population 35 . daily Osteoporosis is a major public health problem in the elderly population in the worldwide 31 . Osteoporosis is described as a systemic skeletal disease characterized by low bone mass, deterioration of the bone tissue, increasing bone fragility and it's susceptibly for recurrent fractures 20,36. It is a silent disease that causes no symptoms until a fracture occurs 28 . It is a debilitating disease affecting millions of people. It leads to an increased risk of bone fracture in the elderly due to loss of bone mass and strength¹⁹. The greatest direct expenditures associated with osteoporosis arise from the treatment of fractures and their squeals in elderly³⁰.

Bone strength depends on bone size, volumetric bone density, micro architecture, and intrinsic bony tissue properties. The risk of osteoporosis depends on the achievement of peak bone mass²⁷. Bone mineral density (BMD) was controlled by interaction of many factors. These factors mainly are genetic and non-genetic factors³⁶. Hormonal status is one of the major non-genetic factors, so hormone-replacement therapy (HRT) is mainly effective

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

in the prevention of bone loss in early postmenopause^{27,31}. Parathyroid hormone (PTH) has been shown to be an anabolic agent for animal and human skeletons. It plays an important role in bone mass homeostasis. The combined PTH administration and exercise training are beneficial in the treatment of osteoporosis²⁶. Many investigators support that growth hormone could enhance loadingrelated bone formation and modulate the responsiveness of bone tissue to mechanical stimuli by changing the mechanical thresholds for bone formation¹⁴.

Several risk factors for osteoporosis have been identified in the literature²⁰. Bone mass and prevalence of osteoporotic fracture differ by sex, as the female has more risk $^{25, 39}$. About 80% of osteoporosis occur in women and 20% in men²⁸. At the same time both women and men are experiencing an age-related decline in BMD starting in the midlife²⁷. Consequently all post-menopausal women and men over 50 vears of age should be assessed for the presence of risk of osteoporosis³⁰. So if osteoporosis or low BMD is identified, the evaluation of contributing risk factors should be considered e.g. patients on long-term glucocorticoid therapy are at high risk for developing osteoporosis^{28,5}. In addition family history of osteoporosis, menopause before age 45 years, diet and inactivity are considered risk factors for developing osteoporosis⁹. In addition sedentary lifestyle and smoking were considered as main risk factors for the bone $loss^5$.

Many devices and techniques are available for measuring BMD²⁸. Dual-energy X-ray absorptiometry (DXA) is the method commonly used to diagnose osteoporosis. This technique used for measuring the central skeleton (e.g. spine, proximal femur)^{24,10} or measured some part of the peripheral skeleton as ultradistal and proximal radius². Other factors that may alter bone strength "include bone turnover, architecture (size and shape, or bone geometry), micro architecture, damage accumulation, matrix properties, mineralization, and mineral properties" can be detected as bone quality¹⁷. Quantitative ultrasound (QUS) of the bone by ultrasound bone densitometer is widely reported as a technique^{3,32}. Calcaneal recent OUS measurement is becoming increasingly popular for the assessment of skeletal status in children, adults, postmenopausal women and elderly subjects^{7,12,29}.

Health-related quality of life (HRQOL) assessment plays an increasingly important role in intervention studies for patients with osteoporosis³³. HRQOL is used as an outcome measure that complements BMD measurement in osteoporosis because the imaging tests don't adequately reflect the extent to which the patient is affected in his or her daily activities⁴.

Good nutrition is considered an essential factor for good bone health^{8,27}. Calcium is the most important nutrient for attaining peak bone mass. Vitamin D is required for optimal Calcium absorption and thus it is also important for bone health. In addition there is evidence that physical activity strong contributes to bone mass building up ^{35,15,43}. It was documented that physical activity has positive effect on growing bones^{15,16} during childhood, adolescence¹⁸, in adults⁴³ and in elderly subjects²⁷. Many investigations have confirmed that active children have a higher bone mass than non-active children^{15,16}. Many trials of exercises intervention are proved to increase physical activity during bone growth^{15,16}, in adults⁴³ and to overcome osteoporosis⁴¹.

Physical exercises have a good influence on bone health²³. Exercises have a benefit on bone mechanical properties by changing the

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

composition of the bone (e.g. water content ratio, collagen formation) in addition to the BMD^{22} . There is a positive stress/strain relationship between exercise and bone so it has potential benefits in preventing bone loss. The adaptation of bone to exercise is critically important in designing public health^{30,25}. Forces generated through the mechanical loads during exercises promote osteogenesis²¹. Other benefits of exercises in elderly are the of balance, reduction improvement of recurrent falling and the associated risk of fracture^{27,11}. At the same time exercises have the ability to improve body composition⁴³ and muscle strength¹³ Which is other predicting factor of bone mass and strength⁴³. In the literature there is agreement on that both men should be encouraged to and women participate in exercise program^{8,40}. It was suggested that continued training at a reduced frequency and intensity is required to maintain the musculoskeletal benefit from exercise which may lower fracture risk in later life 43 .

Different techniques of exercises are recommended in the literature to benefit bone mechanical properties²². Resistance exercises (RE) are used to enhance bone mass in form of strength training programs⁴³ due to the belief that improved strength has been associated with improved muscle and bone mass, balance, and mobility. All of these factors are important in the prevention of fractures and improved quality of life³⁵. Swimming exercises produce some beneficial effects on bone structure, turnover, and strength^{19,22}. Recently some investigators suggested that whole body training may also increase general BMD⁴¹. Weight-bearing exercises are the most popular type of exercises used for bone osteogenesis in children, adolescents, adults, and in post-menopausal women^{15,41}. This category of exercises mainly include impact as a component^{21,40}, because this type of exercise load the skeleton in an atypical manner that increased BMD^{25,19}. Forces generated through mechanical loads during any exercise promote osteogenesis. These forces are highest during weight-bearing modes of exercises⁴¹. These exercises are traditionally modes of recommended for improving bone health in post-menopausal women¹⁹. Weight-bearing exercises are applied in literature with different modes as running²² or jumping^{21,43}. Then recently it was suggested that a relatively light weight bearing exercises may be beneficial and feasible in elderly for the prevention of osteoporosis⁸.

So the purpose of this study was to investigate the effect of weight -bearing exercises in elderly patients with osteoporosis and to compare its effect with that of nonweight-bearing exercises on those patients.

METHODS AND PROCEDURE

Subjects

Forty patients (13 male and 27 female) ranged in age from 60 to 70 years old. Each patient was diagnosed according to DXA measurement ("T-score," lower than-2.5). The patients were divided randomly into two equal groups. Group-I: Twenty patients (6 male and 14 female) with mean age (65.7 ± 2.9) years old weight -bearing exercises with trained program. Group-II: Twenty patients (7 male and 13 female) with mean age (65.8 ± 3.2) years old trained with non-weight-bearing exercises program. Each patient practiced the program for 30 to 45 minutes/ session, two times /week for 6 months (table 1). Each patient was informed with all procedures, and signed a consent form to continue the training program for 6 months. Each patient was evaluated before and after the training program. This study was conducted at the outclinic of Faculty of Physical Therapy, Cairo

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

University. The radiographic investigation was conducted in Department of Radio diagnosis, Faculty of Medicine, Cairo University. Elderly patients suffered from uncontrolled hypertension, diabetes, symptomatic cardio respiratory disease, severe renal or hepatic disease, progressive neurological disease, chronic disabling arthritis, significant dementia, anemia and marked obesity with the inability to exercise were excluded from the study.

Instrumentation

- 1) Dual-energy X-ray absorptiometry (DXA) was used for measuring Bone mineral density (BMD) and detection of "T-score"^{10,24,28}.
- 2) ECOS-16 Health related quality of life questionnaire was used to study the effect of the both groups on quality of life⁴.

Assessment Procedure

- 1- Dual-energy X-ray absorptiometry (DXA) used to detect a "T-score," which is the number of standard deviations above or below the mean BMD for normal young adults. "Osteoporosis is defined as a Tscore lowers than -2.5". T-score of the lumbar spine, and right femoral neck are calculated to reflect the BMD^{24,28}
- 2- "ECOS-16" questionnaire: It is a selfadministered questionnaire. It consists of 16 items "12 items from the Quality of Life Questionnaire of the European Foundation for Osteoporosis (OUALEFFO) and 4 items from the Osteoporosis Quality of Life Ouestionnaire (OOLO). ECOS-16 questionnaire includes four dimensions: Physical Function, Pain, Fear of illness and Psychosocial function. The score of each item ranges from 1(best HRQoL) to 5(worst HRQoL). The time frame for the questionnaire was the last week. All items

have the same weight on the overall questionnaire score and the overall score is calculated as the mean score of all the response items⁴.

Treatment procedure

Each patient was trained for 30 to 45 minutes/session, two times /week for 6 months Each patient performed warming up (brisk walking 10 minutes and gentle stretching of knee flexors, calf muscles, lower back muscles)^{12,13,25}. Each patient practiced the weight-bearing or the non-Weight bearing exercises program then followed by cooling down (brisk walking 5 minutes).

Weight-bearing exercises program

These exercises are performed three sets, eight repetitions

- 1- Double leg press on the wall from 30° , 60° , 90° flexion angles^{13,35,41}.
- 2- Unilateral leg press on the wall from 30°, 60°, 90° flexion angles
- 3- Quarter squats up to right angle knee flexion⁴³.
- 4- Wide stance mini squat with arm support on the wall barr⁴¹.
- 5- Step up exercises with arm support 41 .
- 6- Calf rises with upper limb support 25,43.
- 7- Wall slides from supine².
- 8- Standing on one limb 20 sec. with arm support²⁵.

Non-Weight bearing exercises program

These exercises are performed three sets, eight repetitions. The resistance was determined to be 25% of 1 repetition maximum which is re-evaluated after each two months $(1\text{RM})^{13}$.

- 1- Hip exercises (flexion, extension, adduction and abduction)²⁵.
- 2- Leg extension exercises "static and dynamic"⁴¹.

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

- 3- Ouadriceps curl^{13,35}.
- 4- Hamstrings curl^{13,35}.
- 5- Ankle exercises.
- 6- Stationary bicycle ergometer was used with "for 5 minutes" high seat at mild intensity^{13,25}.
- 7- Back extension exercises from standing and supine position³⁴.

Statistical analysis

The collected data were statistically analyzed using *Paired t-test* to compare the effect of each training program within each group. Student t-test was used to compare the mean differences between weight-bearing exercises and non-weight bearing exercises programs in both treatment groups.

RESULTS

1-Physical characteristics of elderly subjects in both treatment groups

There were non-significant differences groups in the physical between both characteristics of elderly subjects. Their age ranged from 60 to 70 years old with mean value (65.7 \pm 2.9) in group-I and (65.8 \pm 3.2) in group-II. The range of height was (150 to 186cm.) with mean value (169.9 \pm 8.4) in group-I and (165.2 ± 8.7) in group-II. The range of weight was (65 to 88) Kg. with mean values (69 \pm 5.6) in group-I and (71.7 \pm 7.4) in group-II. The range of BMI (Body mass index) was (20-30) Kg/cm with mean values (25.1 \pm 2.9) in group-I and (24.4 ± 3.1) in group-II. (Table 1).

Table (1). Physical characteristics of elderly subjects in both groups

Tuble (1). Thysical characteristics of clairly subjects in both groups.								
Variables	Age		Height		Weight		BMI	
Group	GI	G II	GI	G II	GI	G II	GI	G II
Range (min-max)	(60-	-70)	(150-186)		(65-88)		(20-30)	
Mean	65.7	65.8	169.9	165.2	69	71.1	25.1	24.4
SD	2.9	3.2	8.4	8.7	5.6	7.4	2.9	3.1
T-value	0.0)5†	1.7†		1.7† 1.3†		0.6	51†
† Non significant P>0.05	GI: g	roup-I	GI	I group-II				

2- Bone density after training program in both treatments groups

In group-I (weight-bearing exercises program) the mean values of "T-score" in lumbar spine significantly reduced from (-4.1 \pm 0.8) to (-3.9 \pm 0.9) and the "T-score" of the right femoral neck significantly reduced from (-4.1 ± 0.73) to (-3.6 ± 0.76) , (Table 2, fig.1).

Table (2): The mean values of "T-score" in lumbar spine, and femoral neck, in-group (I).

Variables	lumbar	Spine	Femoral Neck		
variables	Pre	Post	Pre	Post	
Mean	-4.1	-3.9	-4.1	-3.6	
SD	0.8	0.9	0.73	0.76	
T-value	6.1*		9.44*		

*Significant P<0.05

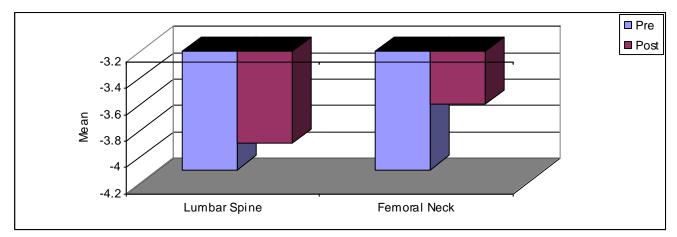


Fig. (1): The mean values of "T-score" in lumbar spine, and femoral neck, in-group (I).

In group-II (Non-weight bearing exercises program) the mean values of "T-score" in lumbar spine significantly reduced from (-4.4 \pm 0.7) to (-4.3 \pm 0.8) and the "T-

score" of right femoral neck significantly decreased from (-4.3 \pm 0.71) to (-4.1 \pm 0.72) (table 3, fig. 2)

Table (3): the mean values of "T-score" in lumbar spine, and femoral neck, in group (II).

Variables	Lumba	ur spine	femoral neck		
variables	Pre	Post	Pre	Post	
Mean	-4.4	-4.3	-4.3	-4.1	
SD	0.7	0.8	0.71	0.72	
T-value	4.8*		7.8*		

^{*}Significant P < 0.05

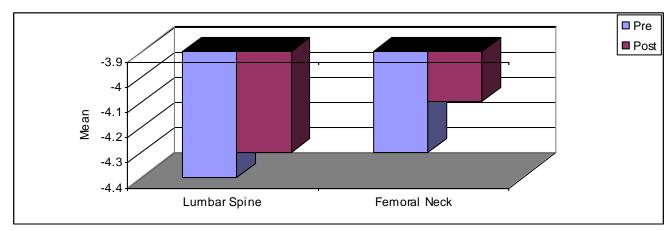


Fig. (2): The mean values of "T-score" in lumbar spine, and femoral neck, in group (II).

With comparison of "T-score" in lumbar spine, and femoral neck, between both groups there was a significant reduction of "T-score" in lumbar spine in group-I with the mean difference (-0.32 \pm 0.25) which is greater than that of group-II (-0.12 \pm 6.3). "T-score" in

femoral neck significantly reduced in group-I with the mean difference (-0.49 ± 0.22) more than that of group-II (-0.12 \pm 7.1), (Table 4, fig.3).

Variables	Lumba	ar spine	femoral neck			
variables	Group I	Group II	Group I	Group II		
Mean	-0.32	-0.12	-0.49	-0.12		
SD	0.25	6.3	0.22	7.1		
T-value	18	18.8*		17.1*		
*Significant P<0.05	GI : Group I GI	I: Group II				

*Significant P<0.05

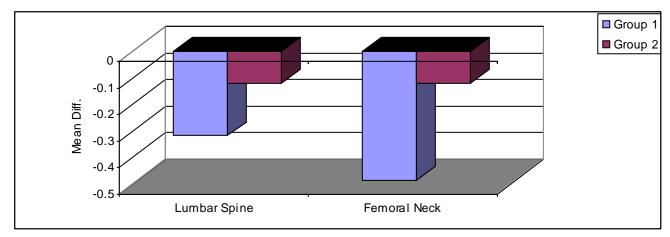


Fig. (3): The mean difference of "T-score" in lumbar spine, and femoral neck in both training groups.

3- Quality of life after both training programs

The mean values of quality of life significantly increased after both training programs. The ECOS 16 questionnaire significantly reduced from (48 \pm 6.6) to (37 \pm 6.5) in group-I, and from (47.3 ± 5.4) to (34.8) \pm 4.9) in group-II. There were non-significant differences between both treatment groups (Table 5, Fig.4).

Table (5): Quality of life ''ECOS 16 questionnaire'' after training program in both training groups.

Group I		Group II		Mean diff.		
Pre	Post	Pre	Post	GI	G II	
48	37	47.3	34.8	10.9	13.5	
6.6	6.5	5.4	4.9	3.9	3.3	
10	10.5*		15.3*		0.35†	
	Pre 48 6.6	Pre Post 48 37 6.6 6.5	Pre Post Pre 48 37 47.3 6.6 6.5 5.4	Pre Post Pre Post 48 37 47.3 34.8 6.6 6.5 5.4 4.9	Pre Post Pre Post G I 48 37 47.3 34.8 10.9 6.6 6.5 5.4 4.9 3.9	

* Significant P<0.05 † Non significant P>0.05 GI: group-I G II group-II

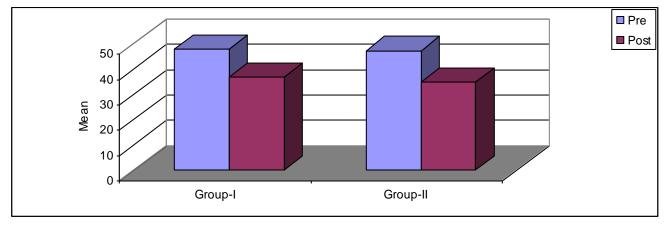


Fig. (4): Quality of life "ECOS 16 questionnaire" after training programs in both groups.

DISCUSSION

The results of this study showed that there were significant reductions of "T-score" of the lumbar spine, and right femoral neck, after either weight-bearing or non-weightbearing exercise programs. The "T-score" is calculated by DXA which is the most common radiological method used to diagnose osteoporosis and to reflect the improvement of BMD in subjects with osteoporosis^{2,10,24}.

This result came in agreement with the literature^{34,35}. Pfeifer et al 2004³⁴ reported in their article review that patients with low bone mineral density would benefit most from specific exercise programs. This can be explained by that muscle strength "which is the main out put of exercises" influence bone density^{6,25,42}. It is considered as a predictor of bone density in elderly subjects^{35,39}, because during muscular contraction the force exerted by the muscle pull on the bone has a strong osteogenic stimulus⁹. In support of this idea some investigators found that the combination of progressive impact (jump) and resistance training can increase bone mineral density in pre-menopausal women⁴³.

In contrast to the result of the current work Adami et al 1999^2 found that strength

training has very little effect on bone mass at the femoral neck, lumbar spine, ultradistal and proximal radius. The program in Adami et al 1999^2 study was moderate physical exercise and designed to maximize the stress on the wrist only, while in the this study the exercises cover weight bearing parts of the body as much as possible. In addition the program of this study continued to 6 months in a progressive mode.

There was more significant reduction of "T-score" in lumbar spine and femoral neck in group-I (Weight-bearing exercises program) than group-II (Non-weight-bearing exercises program); after 6 months of training. This revealed that weight-bearing has more influence on bone density especially on weight -bearing bones. This came in agreement with many previous works^{19,21,28,41}. Verschueren 2004⁴¹ found that whole body vibration training significantly increased bone mineral density of the proximal hip in postmenopausal women. This may be explained by that the muscular forces are highest during weight-bearing mode of exercises^{38,19}. It may have more osteogenic effect on bone than nonweight-bearing¹⁸. Weight-bearing exercises e.g. running, jumping also may be useful to increase bone strength, mass. and

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

morphometry in middle aged ostoepenia²¹ especially at weight-bearing sites²³.

In contrast to the current study Huang et al 2003²² found that both weight-bearing exercises (running) and non-weight-bearing exercises (swimming) benefits the intrinsic and extrinsic bone mechanical properties. Huang et al 2003²² studied the growing bone of rats (animals) not osteoprotic bone and investigated the bone mechanical properties while this study conducted on osteoprotic bone of elderly humans and recorded "T-score" as a predictor of bone density in osteoprosis. In addition bone mechanical properties were not investigated.

The exercise program in this study was designed to be suited to elderly subjects based on previous researches^{2,13,,25,35}. The subjects trained two times per week for 30- 45 minutes in the session²⁵. The program proceeded with warming up period of walking and gentle stretching^{2,13}. The total time of program was 6 months to be enough to improve bone density^{2,41}. The weight bearing exercises were performed with ninety degree of knee flexion to avoid high compression force inside the knee and pain. The exercises in non-weightbearing program were with resistance 25 % of 1 repetition maximum (1RM) for three sets, eight repetitions^{13,35}.

The quality of life was one of the measured variables in the current study because the assessment of quality of life is needed to properly quantify the disease burden¹. Health-related quality of life assessment has become an integral part in assessment and follow-up of osteoporotic subjects³³. The "ECOS 16 questionnaire" was used in the current study to predict quality of life in elderly with osteoporosis. The "ECOS 16 questionnaire" is reported to be a valid and reliable tool for the evaluation of health-

related quality of life in postmenopausal women with osteoporosis⁴.

The results of the current study proved that the quality of life measured by "ECOS 16 questionnaire" significantly increased after both weight-bearing and non-weight-bearing exercise programs without any significant differences between both treatment groups. This was supported by many previous studies^{13,35}. It seems that the programs focusing on strengthening exercises could help in prevention of physical dependence and thereby improves the quality of life in elderly³⁵. Many authors found that the welldesigned supervised exercise program may psychosocial advantages have such as alleviation feelings of of depression, loneliness, and isolation and improvements in cognitive function¹³. These are the main parts of "ECOS 16 questionnaire" which was improved in both groups after both exercises programs.

Conclusion

It was concluded from this study that weight -bearing exercises could increase bone mineral density greater than the non-weightbearing exercises in elderly subjects with osteoporosis. At the same time both weightbearing and non-weight-bearing exercises are effective in improving the quality of life of those patients.

REFERENCES

- 1- Adachi, J.D., Ioannidis, G., Olszynski, W.P., Brown, J.P.: The impact of incident vertebral and non-vertebral fractures on health related quality of life in postmenopausal women. BMC Musculoskeletal Disord. 3(11): 2002.
- 2- Adami, S., Gatti, D., Braga, V., Bianchini, D. and Rossini M.: Site-Specific effects of strength training on bone structure and geometry of ultradistal radius in

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

postmenopausal women. J Bone Miner Res., 14(1): 120-124, 1999.

- 3- Babaroutsi, E., Magkos, F., Manios, Y. and Labros, S. Sidossis, LS: Lifestyle factors affecting heel ultrasound in Greek females across different life stages. Osteoporosis International, 16(5): 552-561, 2005.
- 4- Badia, X., Diez-Pérez, A., Lahoz, R., Lizan, L., Nogués, X. and Iborra, J.: The ECOS-16 questionnaire for the evaluation of health related quality of life in post-menopausal women with osteoporosis. Health and Quality of Life Outcomes, 2: 41, 2004.
- 5- Biskobing, D., M., COPD and osteoporosis Chest. 121: 609-620, 2002.
- 6- Blain, H., Vuillemin, A., Teissier, A., Hanesse, B., Guillemin, F. and Jeandel, C.: Influence of Muscle Strength and Body Weight and Composition on Regional Bone Mineral Density in Healthy Women Aged 60 Years and Over Gerontology, 47: 207-212, 2001.
- 7- Blanchet, C., Giguère, Y., Prud home, D., Dumont, M., Leduc, G., Côte, S., Laflamme, N., Rousseau, F. and Dodin, S.: Leisure Physical Activity is Associated with Quantitative Ultrasound Measurements Independently of Bone Mineral Density in Postmenopausal Women Calcified Tissue International, 73(4): 339-349, 2003.
- 8- Brown, J.P., and Josse, R.G.: 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. Can. Med. Assoc. J., 12: 167–75, 2002.
- 9- Burrows, M., Nevill, A., M., Bird, S. and Simpson, D.: Physiological factors associated with low bone mineral density in female endurance runners. Br J. Sports Med., 37: 67-71, 2003.
- 10- Cadarette, S.M., Jaglal, S.B., Murray, T.M., McIsaac, W.J., Joseph, L. and Brown, J.P.: Evaluation of decision rules for referring women for bone densitometry by dual-energy X-ray absorptiometry. JAMA. 286: 57-63, 2001.
- Campbell, A.J., Robertson, M.C., Gardner, M.M., Norton, R.N. and Buchner, D.M.: Psychotropic medication withdrawal and a

home-based exercise program to prevent falls: a randomized, controlled trial. J Am Geriatr Soc., 47: 850-853, 1999.

- 12- Danielson, M.E., Cauley, J.A., Baker, C.E., Newman, A.B., Dorman, J.S., Towers, J.D. and Kuller, L.H.: Familial resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: the BMD in mothers and daughters study J. Bone Miner Res. 14(1): 102-110, 1999.
- 13- Elliott, K.J., Sale, C. and Cable, N.T.: Effects of resistance training and detraining on muscle strength and blood lipid profiles in postmenopausal women. Br J Sports Med., 36: 340-344, 2002.
- 14- Forwood, M.R., Kelly, W.I. and Bennett, M.B.: Growth hormone is permissive for skeletal adaptation to mechanical loading. J. Bone Miner Res., 16: 2284-2290, 2001.
- 15-Fuchs, R.F., Bauer, J.J. and Snow, C.M.: Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res., 16(1):148-156, 2001.
- 16-Fuchs, R.K. and Snow, C.M.: Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J. Pediatr 141: 357-362, 2002.
- 17- Gnudi, S., Malavolta, N., Testi, D. and Viceconti, M.: Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J. Radiol, 77: 219- 223, 2004.
- 18- Gustavsson, A., Olsson, T. and Nordstr. M.P.: rapid loss of bone Mineral Density of the Femoral Neck After Cessation of Ice Hockey Training: A. 6-Year Longitudinal Study in Males J Bone Miner Res., 18(11): 1964-1969, 2003.
- 19- Hart, K.J., Shaw, J.M., Vajda, E., Hegsted, M. and Miller, S.C.: Swim-trained rats have greater bone mass, density, strength, and dynamics. J. Appl Physiol, 91(4): 1663-1668, 2001.
- 20- Hernandez-Rauda, R. and Martinez-Garcia, S.: Osteoporosis-related life habits and knowledge about osteoporosis among women in El

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

Salvador: A cross-sectional study. BMC Musculoskelet Disord, 26(5): 5-29, 2004.

- 21- Honda, A., Sogo, N., Nagasawa, S., Shimizu, T. and Umemura, Y.: High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. J Appl Physiol, 95: 1032-1037, 2003.
- 22- Huang, T.H., Lin, S.C., Chang, F.L., Hsieh, S.S., Liu, S.H. and Yang, R.S.: Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone J. Appl Physiol, 95: 300-307, 2003.
- 23- Iwamoto, J., Takeda, T. and Sato, Y.: Effect of treadmill exercise on bone mass in female rats. Exp Anim., 54(1): 1-6, 2005.
- 24- Kanis, J.A. and Gluer, C.C.: An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int., 11: 192-202, 2000.
- 25- Kerr, D., Ackland, T., Maslen, B., Morton, A. and Prince, R.: Resistance Training over 2 Years Increases Bone Mass in Calcium-Replete Postmenopausal Women. J Bone Miner Res., 16(1): 175-181, 2001.
- 26- Kim, C.H., Takai, E., Zhou, H., Stechow, D.V., Müller, R., Dempster, D.W. and Guo, X.E.: Trabecular Bone Response to Mechanical and Parathyroid Hormone Stimulation: The Role of Mechanical Microenvironment. J Bone Miner Res., 18: 2116- 2125, 2003.
- 27- Klibanski, A., Adams-Campbell, L., Bassford, T., Blair, S.N., Boden, S.D. and Dickersin, K.: NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA., 285: 785-795, 2001.
- 28- Lewiecki, E.M.: Management of osteoporosis. Clinical and Molecular Allergy. 2(9): 1476-1489, 2004.
- 29- Magkos, F., Manios, Y., Babaroutsi, E. and Sidossis, L.S.: Contralateral differences in quantitative ultrasound of the heel: the importance of side in clinical practice Osteoporosis International., 16(8): 879-886, 2005.

- 30- Melton, L.J.: Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner Res., 15: 2309-2314, 2000.
- 31- Morabito, N., Crisafulli, A., Vergara, C., Gaudio, A., Lasco, A. and Frisina, N.: Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J. Bone Miner Res., 17(10): 1904-1912, 2002.
- 32- Njeh, C.F., Hans, D., Li, J., Fan, B., Fuerst, T. and He, Y.Q.: Comparison of six calcaneal quantitative ultrasound devices: precision and hip fractures. Osteoporos Int., 11: 1051- 1062, 2000.
- 33- Oleksik, A., Lips, P., Dawson, A., Minshall, M.E., Shen, W., Cooper, C. and Kanis, J.: Health-Related Quality of Life in Postmenopausal Women With Low BMD With or Without Prevalent Vertebral Fractures. J Bone Miner Res, 15: 1384-1392, 2000.
- 34- Pfeifer, M., Sinaki, M., Geusens, P., Boonen, S., Preisinger, E. and Mine, H.W.: Musculoskeletal Rehabilitation in Osteoporosis: A Review J. Bone Miner Res., 19: 1208-1214, 2004.
- 35- Rhodes, E.C., Martin, A.D., Taunton, J.E., Donnelly, M., Warren, J. and Elliot, J.: Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J. Sports Med., 34: 18-22, 2000.
- 36- Rizzoli, R., Bonjour, J.P. and Ferrari, S.L.: Osteoporosis, genetics and hormones. J. Mol. Endoc. 26: 79-49, 2001.
- 37- Roberston, M.C., Devlin, N., Gardner, M.M., and Campbell, A.J.: Effectiveness and economic evaluation of a nurse delivered home exercise program to prevent falls. Randomized controlled trial. BMJ. 322: 697-701, 2001.
- 38- Spier, S.A., Delp, M.D., Meininger, C.J., Donato, A.J., Ramsey, M.W. and Muller-Delp, J.M.: Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles. J. Physiol, 556(3): 947-958, 2004.

Bull. Fac. Ph. Th. Cairo Univ.,: Vol. 10, No. (2) Jul. 2005

- 39- Taaffe, D.R., Cauley, J.A., Danielson, M., Nevitt, M.C., Lang, T.F., Bauer, D.C. and Harris, T.B.: Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the health, aging, and body composition study. J Bone Miner Res., 16(7): 1343-1352, 2001.
- 40- Van Haastregt, J., C., Diederiks, J.P., Van Rossum, E., De Witte, L.P., Voorhoeve, P.M. and Crebolder, H.F.: Effects of a programme of multifactorial home visits on falls and mobility impairments in elderly people at risk: a randomized controlled trial. BMJ., 321: 994-998, 2000.
- 41- Verschueren, S.M., Roelants, M., Delecluse, C., Swinnen, S., Vanderschueren, D. and

Boonen, S.: Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res., 19(3): 352-359, 2004.

- 42- Vincent, K.R. and Braith, R.W.: Resistance training and bone turnover in elder men and women. Med Sci Sports Exerc., 34: 17-23, 2002.
- 43- Winters, K. and Snow, C.M.: Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res., 15(12): 2495-2503, 2000.

الملخص العربي

تمرينات تحميل الوزن مقابل تمرينات عدم تحميل الوزن في علاج هشاشة العظام لدي المسنين

تهدف هذه الدراسة إلى مقارنة تأثير تمرينات تحميل الوزن وعدم تحميل الوزن علي مرضي هشاشة العظام من المسنين. تشمل هذه الدراسة أربعين مريضاً من المسنين (13من الذكور و27 من الإناث) تتراوح أعمار هم ما بين ستين وسبعين عاما. بعد أن تم تشخيصهم انهم يعانون من هشاشة العظام طبقا لمقياس كثافة العظام "مقياس تى اقل من -2.5 " تم تقسيم المرضي عشوائيا إلى مجموعتين متساويتين في يعانون من هشاشة العظام طبقا لمقياس كثافة العظام "مقياس تى اقل من -2.5 " تم تقسيم المرضي عشوائيا إلى مجموعتين متساويتين في يعانون من هشاشة العظام طبقا لمقياس كثافة العظام "مقياس تى اقل من -2.5 " تم تقسيم المرضي عشوائيا إلى مجموعتين متساويتين في العدد: المجموعة الأولى تشمل عشرون مريضاً (6 من الذكور و 14 من الإناث) متوسط أعمار هم (2.2 ± 65.6) تم تدريبهم ببرنامج تمرينات تحميل الوزن. المجموعة الثانية تشمل عشرون مريضاً (6 من الذكور و 14 من الاندث) متوسط أعمار هم (2.2 ± 65.6) تم تدريبهم ببرنامج تدريبام برنامج مرينات عدم تحميل الوزن. كانت مدة تدريب جميع المرضي تتراوح بين ثلاثون و و 10 من الإناث) متوسط أعمار هم (2.2 ± 65.6) تم تدريبهم ببرنامج تدرينات تحميل الوزن. كانت مدة تدريب جميع المرضي تتراوح بين ثلاثون و في الولى منو ما من المسنين، عن طريق الواحدة بمعدل مرينان عدم تحميل الوزن. كانت مدة تدريب جميع المرضي تتراوح بين ثلاثون و و 10 من الإناث) متوسط أعمار هم (2.2 ± 65.6) تم لي الواحدة بمعدل مرتان أسبوعيا لمدة سنة أشهر. تم قياس كثافة العظام "مقياس تى" للفقرات القطنية، والرقبة الفذية اليمني، عن طريق الواحدة بمعدل مرتان أسبوعيا لمدة سنة أشهر. تم قياس كثافة العظام "مقياس تى" للفقرات القطنية، والريق لعام مرفيق أولى وي العول الورن في عدم مريق موينات تحميل مرينان أسبوعيا لمدة العلاج الوزن في عامر عمي المرضي عشوائي القطنية، وأربعون دقيقة في الجلسة في علي الورت في تعلي الموني، في المرضي عشر فراحت تعام في المري أولى في مريفا في مريفا في طريق في الواحة "ديكسا" قبل وبعد برنامج العلاج بالإضافة إلى قياس كثافة العظام "مو من الموموعة أولى علي في وي قياس كثافة العظام "مقياس تى" الفظنية، الموني، في المجموعتين مع زيادة كثافة العظام في المجموعة الأولى بعد تمرينات تحميل الوزن عن المجموعة الثانية العظام مريفي في ونيان مرودة الميني، في مريفي من تربي مريفي وويان مدوي بي الرون ول مو ت